منابع مشابه
On Metro-Line Crossing Minimization
We consider the problem of drawing a set of simple paths along the edges of an embedded underlying graph G = (V,E) so that the total number of crossings among pairs of paths is minimized. This problem arises when drawing metro maps, where the embedding of G depicts the structure of the underlying network, the nodes of G correspond to train stations, an edge connecting two nodes implies that the...
متن کاملLine Crossing Minimization on Metro Maps
We consider the problem of drawing a set of simple paths along the edges of an embedded underlying graph G = (V, E), so that the total number of crossings among pairs of paths is minimized. This problem arises when drawing metro maps, where the embedding of G depicts the structure of the underlying network, the nodes of G correspond to train stations, an edge connecting two nodes implies that t...
متن کاملMetro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases
Crossing minimization is one of the central problems in graph drawing. Recently, there has been an increased interest in the problem of minimizing crossings between paths in drawings of graphs. This is the metro-line crossing minimization problem (MLCM): Given an embedded graph and a set L of simple paths, called lines, order the lines on each edge so that the total number of crossings is minim...
متن کاملAn Improved Algorithm for the Metro-line Crossing Minimization Problem
In the metro-line crossing minimization problem, we are given a plane graph G = (V,E) and a set L of simple paths (or lines) that cover G, that is, every edge e ∈ E belongs to at least one path in L. The problem is to draw all paths in L along the edges of G such that the number of crossings between paths is minimized. This crossing minimization problem arises, for example, when drawing metro m...
متن کاملTwo Polynomial Time Algorithms for the Metro-line Crossing Minimization Problem
The metro-line crossing minimization (MLCM) problem was recently introduced in [5] as a response to the problem of drawing metro maps or public transportation networks, in general. According to this problem, we are given a planar, embedded graph G = (V, E) and a set L of simple paths on G, called lines. The main task is to place the lines on the embedding of G, so that the number of crossings a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Algorithms and Applications
سال: 2010
ISSN: 1526-1719
DOI: 10.7155/jgaa.00199